






# PORTLAND CEMENT BASED FAST-SETTING CONCRETE DEMONSTRATION

District 07
Los Angeles County
Contract Number: 07-181504

September 2001

# **ACKNOWLEDGEMENTS**

The Office of Rigid Pavement and Structural Concrete would like to express its gratitude to the following groups for their participation, assistance and support:

#### **HEADQUARTERS**

**Division of Maintenance** 

## **DISTRICT 07**

Maintenance

Construction

**Materials Engineering** 

#### **INDUSTRY**

**Chumo Construction** 

Master Builders, Inc.

**National Ready Mix** 

**Teichert Ready Mix** 

**Twining Laboratories** 

**Cover photo:** Approximately 4 hours and 20 minutes after placement, a loaded ready mix truck was driven onto the slab (see cover photo). No cracks were observed

# FAST-SETTING CONCRETE DEMONSTRATION

#### District 07 Los Angeles County Contract Number: 07-181504

This report reflects the observations and conclusions of the authors. This report is not an endorsement of any products, services or companies.

This report does not constitute a standard, specification, or regulation. The Office of Rigid Pavement and Structural Concrete is responsible for the accuracy of the information and data presented in this report.

TOM PYLE, Chief

Office of Rigid Pavement and Structural Concrete

# **TABLE OF CONTENTS**

| Introduction | n                             | 1 |
|--------------|-------------------------------|---|
| Demonstrat   | tion Slabs                    | 2 |
| Trial Slab   |                               | 3 |
| Test Be      | eams                          | 4 |
| Temper       | ratures                       | 5 |
| Conclusion   | 1                             | 6 |
| Points of Co | ontact                        | 7 |
|              | <u>LIST OF FIGURES</u>        |   |
| Figure 1.    | Demonstration Slab            | 2 |
| Figure 2.    | Trial Slab                    | 3 |
| Figure 3.    | Consolidation and Finishing   | 3 |
| Figure 4.    | Fabricating Test Beams        | 4 |
| Figure 5.    | Initial Concrete Temperature  | 5 |
|              | <u>LIST OF TABLES</u>         |   |
| Table 1      | Test Beam Results             | 4 |
| Table 2      | Air and Concrete Temperatures | 5 |

## **INTRODUCTION**

The Department currently uses fast-setting concrete to accommodate short working windows, normally at night. The current special provision for fast-setting concrete requires that the concrete reach a flexural strength of 2.8 MPa (400 psi) before opening to traffic. This special provision is a performance specification that allows the contractor to be creative with materials as long as the specified strength is attained. To date, proprietary cements have been used with some degree of success in slab replacement work and in limited structural repairs of bridges. Development of a portland cement based mix that can be placed and opened to traffic in four to six hours has been elusive.

In a continuing effort to demonstrate the effectiveness of fast-setting concrete mixes using non-proprietary cements, Translab and Industry have evaluated several portland cement based concrete mixes. After months of hard work, MasterBuilders, Inc., appears to have developed an admixture system that meets or exceeds the requirement of the aforementioned special provision. With the assistance of Teichert Ready Mix, National Ready Mix, and Chumo Construction, MasterBuilders provided Translab the opportunity to evaluate this mixture by placing three different slabs.

#### **DEMONSTRATION SLABS**

On August 28, 2001, the first of two demonstration slabs was placed at Translab. Teichert Ready Mix, under the guidance of MasterBuilders, batched and delivered the experimental mix. The mix consisted of a Kaiser Type II/III cement, a high-range water reducer, an accelerator, and 12.5-mm (½") maximum size aggregate, with a 0.31 w/c ratio. The mix had a 180-mm (7") slump and was very workable. In 4 hours, the test beams had a flexural strength of 2.3 MPa (332 psi) and 2.8 MPa (412 psi) at 6 hours. After 7 days, a flexural strength of 5.0 MPa (732 psi) was obtained.

A second demonstration slab was placed at the National Ready Mix plant in Glendale on September 5 (see Figure 1). The mix consisted of the same high-range water reducer and accelerator, 25-mm (1") maximum size aggregate and a Mitsubishi Type III cement. The mix was delivered in a ready mix truck, had a 125-mm (5") slump and was very workable. At 4 hours, the test beams had a flexural strength of 3.3 MPa (477 psi), the target strength was 2.8 MPa (400 psi).





Figure 1. Demonstration Slab in Glendale.

Approximately 4 hours and 20 minutes after placement, a loaded ready mix truck was driven onto the slab (see cover photo). No cracks were observed.

# TRIAL SLAB

On September 14, a trial slab, conforming to the specifications for Project 07-181504, was placed on Interstate 405 during the night. National Ready Mix batched and delivered the concrete and Chumo Construction placed it. The mix design was essentially the same as that of the second demonstration slab. The mix had a slump of 240-mm (9½") and was also very workable.



Figure 2. Placing Concrete for the Trial Slab



Figure 3. Consolidating and Finishing the Trial Slab

#### **Test Beams**

Several sets of test beams were fabricated for flexure strength testing. The beams were insulated after fabrication. Testing was performed at 3, 4, 5, 8, and 24 hours after placement. The target strength was 2.8 MPa (400 psi) in 4 hours during nighttime temperatures.



Figure 4. Fabricating Test Beams

The mix was effectively "put to sleep" by retarding the hydration process during transit. The accelerator was added to the mix at the job site.

**Table 1.** Test Beam Results

| Curing  | Strength, MPa |        |        |         |
|---------|---------------|--------|--------|---------|
| Time    | Beam 1        | Beam 2 | Beam 3 | Average |
| 3 Hour  | 2.90          | 3.20   | 2.70   | 2.95    |
| 4 Hour  | 3.20          | 3.35   | 3.50   | 3.35    |
| 5 Hour  | 3.70          | 3.75   | 3.50   | 3.65    |
| 8 Hour  | 4.30          | 4.10   | 4.30   | 4.20    |
| 24 Hour | 4.50          | 4.40   | 4.50   | 4.45    |

# **Temperatures**

Upon placing and finishing the trial slab, the concrete temperature was 28.6°C (83.5°F). About 4 hours later, the concrete temperature peaked at 53.9°C (129°F). Temperatures for the test beams were not recorded.



Figure 5. Initial Concrete Temperature

**Table 2.** Air and Concrete Temperatures

| Time | Air<br>Temperature*, °C (°F) | Concrete<br>Temperature, °C (°F) |
|------|------------------------------|----------------------------------|
| 0053 | 17.2 (63.0)                  | N/A                              |
| 0111 | 16.7 (62.1)                  | 28.6 (83.5)                      |
| 0200 | 16.7 (62.1)                  | 31.1 (88.0)                      |
| 0430 | N/A                          | 52.8 (127.0)                     |
| 0530 | N/A                          | 53.9 (129.0)                     |
| 0630 | N/A                          | 52.8 (127.0)                     |

<sup>\*</sup>Temperature at Burbank Airport

N/A = not available

Encouraged by the test beam results and performance, District 07 has expressed an interest in continuing to use this mix on this project.

## **CONCLUSIONS**

The flexural strengths of the mix met or exceeded the target strength of 2.8 MPa (400 psi) in 4 hours. This blend of chemical admixtures and cement was found to be user-friendly by both the concrete producers and the construction crews placing and finishing the slabs. The mix had good slump, allowed plenty of time to place and finish the slabs, and provided ample time for delivery trucks to be washed out.

The primary application for this mix would be concrete roadway repair and rehabilitation as well as emergency repairs. Because of its high strengths and non-chloride characteristics, the mix could potentially be used for bridge repairs.

With the demonstrated success of this portland cement based fast-setting concrete, it is likely that other admixture suppliers will develop their own similar performing systems and make them available soon.

# **POINTS OF CONTACT**

# Office of Rigid Pavement and Structural

| Tom Pyle      | Office Chief                     | (916) 227-7281 |
|---------------|----------------------------------|----------------|
| Ken Beede     | Consultations and Investigations | (916) 227-7060 |
| Doran Glauz   | Materials & Research             | (916) 227-7272 |
| Karl Smith    | Maintenance Liaison              | (916) 227-7230 |
| Raul Alarcon  | Consultations and Investigations | (916) 227-7913 |
| Daniel Zuhlke | Consultations and Investigations | (916) 227-7907 |

# **Headquarters - Division of Maintenance**

| Leo Manselein — nQ nA22 Advisor (910) 031-200 | ahserelli HQ HA22 Advisor (916) 651-200 | (916) 651-200 | HA22 Advisor | HQ H | Leo Mahserelli |
|-----------------------------------------------|-----------------------------------------|---------------|--------------|------|----------------|
|-----------------------------------------------|-----------------------------------------|---------------|--------------|------|----------------|

#### District 07

| Ahed Moussa | Transportation Engineer | (310) 609-0264, x247 |
|-------------|-------------------------|----------------------|
|-------------|-------------------------|----------------------|

## MasterBuilders, Inc.

| Jim Anderson          | Western Manager, ESG     | (702) 558-8439 |
|-----------------------|--------------------------|----------------|
| W.J. "Mac" McClelland | Regional Manager (North) | (800) 992-9950 |
| Tracy Moseley         | Regional Manager (South) | (949) 647-7215 |

# **National Ready Mix**

Allen Ellis Vice President, Operations (818) 768-0050